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Abstract
This paper provides explicit techniques to compute the exponentials of a variety
of anti-Hermitian matrices in dimension 4. Many of these formulae can be
written down directly from the entries of the matrix. Whenever any spectral
calculations are required, these can be done in closed form. In many instances
only 2 × 2 spectral calculations are required. These formulae cover a wide
variety of applications. Conditions on the matrix which render it to admit one
of three minimal polynomials are also given. Matrices with these minimal
polynomials admit simple and tractable representations for their exponentials.
One of these is the Euler–Rodrigues formula. The key technique is the relation
between real 4 × 4 matrices and the quaternions.

PACS numbers: 03.65.Fd, 02.10.Yn, 02.10.Hh

1. Introduction

Finding the exponential of a 4 × 4 anti-Hermitian matrix explicitly is a problem which is of
importance to quantum physics and its applications, especially to quantum optics, quantum
information processing and computation. The problem of computing the solution to

V̇ (t) = iH(t)V (t), V (0) = I4, V ∈ U(4) (1.1)

with H(t) a 4 × 4 Hermitian matrix, arises in the study of four-level (or two-qubit) systems.
Here U(4) stands for the group of 4 × 4 unitary matrices, i.e., 4 × 4 complex matrices whose
inverse is their own transpose conjugate. The solution to this problem can be reduced to the
problem of computing the exponential exp(iγ (t)H̃ ) with H̃ a 4×4 Hermitian matrix, typically
different from H(t), and γ (t) some function. This reduction is achieved via either a passage
to a rotating frame, approximations such as the rotating wave approximation, or techniques
such as the Wei–Norman expansion or the Magnus expansion, or a combination thereof,
[15, 20, 22]. Further, in the context of controlling four-level quantum systems, it is known
that the unitary generators obtainable by allowing arbitrary time-varying external fields are
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precisely those obtainable by using only piecewise constant fields. This is the ‘controllability
with admissible controls is equivalent to controllability with piecewise constant controls’ result
of [11], valid for any compact Lie group. Now determining the unitary generator after the
application of a constant field to a four-level system is a matter of exponentiating 4 × 4 anti-
Hermitian matrices. Further impetus to this question is provided by the issue of universality
in quantum computation. Indeed, in quantum computation, due to various universality-type
results, it is known that to synthesize any quantum circuit it suffices to realize unitary matrices
which are the tensor products of the identity matrix and unitary matrices which have either
size 2 or 4 (see, for instance, [4]). This, in turn, is equivalent to generating unitary matrices
of size 2 or 4 selectively (this is essentially what the identity matrices in the tensor product
amount to—the identity refers to the fact that the external interaction which seeks to address
certain levels or qubits does not disturb the other qubits, i.e., the addressing of the target qubits
or levels is selective). In particular, this requires the accurate computation of exponential of
anti-Hermitian matrices of sizes 2 or 4.

The purpose of this paper, keeping the above goal in mind, is twofold. First, we point out
that the formulae in [19] extend in a straightforward manner to provide explicit closed-form
formulae for the exponentials of a variety of matrices in su(4)—the Lie algebra of 4 × 4 anti-
Hermitian matrices with null trace. These formulae already cover a wide variety of physical
applications. Secondly, we characterize when a matrix in su(4) admits either a quadratic
minimal polynomial or a Euler–Rodrigues-type formula for its exponential. In either instance
the exponential of the matrix has a particularly simple representation.

It is obvious that there is no loss of generality in assuming that the matrix being
exponentiated has zero trace. It is noted further that, in most instances, in the problem
of exponentiating γ (t)H̃ , H̃ ∈ su(4), one can assume γ to be constant. To illustrate
this consider the well-known formula exp(ia(t)I2 ⊗ σx + ib(t)I2 ⊗ σy + ic(t)I2 ⊗ σz) =
cos(λ(t))I4 + sin(λ(t))

λ(t)
(ia(t)I2 ⊗σx +ib(t)I2 ⊗σy +ic(t)I2 ⊗σz), λ(t) =

√
a(t)2 + b(t)2 + c(t)2.

This formula would not suffer any modifications, beyond λ(t) being autonomous, if each of
a(t), b(t), c(t) were constant. In particular, all the results of section 3 extend verbatim to the
case where γ (t) is not constant.

The formulae provided in this paper rely on an associative algebra isomorphism between
H ⊗ H and gl(4, R). Here H stands for the skew-field of the quaternions (i.e., H behaves
very much like a field except that the multiplication in it is not commutative, see [12] for
details) while gl(4, R) represents 4 × 4 real matrices—the Lie algebra of the general linear
Lie group, GL(4, R). This isomorphism, known from the theory of Clifford algebras [12],
has only recently been used in concrete (numerical) linear algebra questions. To the best of
our knowledge the innovative work of [6, 9, 13, 14] on the eigenvalue problem for a variety
of structured real matrices is the first such instance.

In [19], the same isomorphism was used to compute closed-form formulae for exponentials
of structured real matrices. This is indeed the point of departure for this paper. Given the close
relationship between the quaternions and the Pauli matrices, it seems plausible that the basis
for gl(4, R) provided by the aforementioned associative algebra isomporphism is essentially
the basis for u(4) provided by the various Kronecker products of the Pauli matrices and I2. It
is tempting to believe that this correspondence is as elementary as assigning, for instance, the
elements i ⊗ 1, j ⊗ 1, k ⊗ 1 in H ⊗ H to the matrices σx ⊗ I2, σy ⊗ I2, σz ⊗ 1 etc; however, a
moment’s reflection shows that it cannot be this simple. For instance, the matrix σx ⊗ I2 is a
real symmetric matrix, since σx and I2 are real symmetric, and the Kronecker product of two
real symmetric matrices is also real symmetric. On the other hand, the matrix associated with
the quaternion tensor i⊗1 is real antisymmetric. Indeed, a 4×4 matrix is real anti-symmetric
iff its quaternion tensor representation is p ⊗ 1 + 1 ⊗ q, with p, q both purely imaginary
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quaternions (i.e, quaternions whose real parts are null) [6, 9, 13, 14]. In light of this, it is
a pleasant circumstance that the aforementioned plausible connection is indeed valid. The
precise correspondence is presented in the next section.

It is worth mentioning that the results presented here can also be used to exponentiate
matrices in su(3). Indeed, one has to just embed such a matrix as a principal submatrix in a
4×4 matrix, with the rest of the 4×4 matrix consisting of zero entries. A different application
would be to exponentiate matrices in so(6, R), the Lie algebra of 6 × 6 real anti-symmetric
or skew-symmetric matrices. SU(4) is a double cover of SO(6, R), [12]. By making this
covering homomoprhism explicit, one can reduce the problem of exponentiation in so(6, R)

to finding exponentials in su(4).
The balance of this paper is organized as follows. In the next section, the relation between

the H ⊗ H basis for gl(4, R) and the Pauli tensor product basis, i.e., the matrices consisting
of all possible Kronecker products of I2, σx, σy, σz amongst themselves, is made explicit. The
same section also establishes notation used throughout this paper. Section 3 presents su(4)

analogues of the results of [19]. In particular, several illustrations drawn from important
applications are given. Section 4 presents conditions which ensure that an su(4) matrix either
has a quadratic minimal polynomial or admits a Euler–Rodrigues’ formula. The same section
also presents conditions equivalent to an su(4) matrix to stem from a normal matrix (i.e.,
if X = B + iC, then BC = CB, where B,C are the skew-symmetric (antisymmetric) and
symmetric parts of X ∈ su(4), respectively). The final section offers conclusions.

2. Notation and preliminary observations

The following definitions and notation will be frequently met in this work.

• gl(n, R) represents the algebra of real n × n matrices. This is, of course, the Lie algebra
of the Lie groups of real invertible matrices. For more on the notions of Lie groups and
Lie algebras we refer the readers to [8].

• SU(n) represents the Lie group of n × n unitary matrices of determinant 1, i.e., n × n

matrices with complex entries, whose inverses are their own transpose conjugates. su(n)

represents the corresponding Lie algebra of n × n skew-Hermitian, traceless matrices.
su(2)⊗ su(2) is the Lie algebra spanned by matrices of the form I2 ⊗U +V ⊗ I2, U, V ∈
su(2). Note that it is customary to use the terminology ‘anti-Hermitian’ for skew-
Hermitian matrices.

• Rn represents the matrix with 1 on the anti-diagonal and zeros elsewhere. Any n×n matrix
A satisfying AT Rn + RnA = 0 is said to be perskewsymmetric. Persymmetric matrices
are those matrices, X, which satisfy XT Rn = RnX. Such matrices are symmetric about
the anti-diagonal.

• J2n is the 2n × 2n matrix which, in block form, is given by J2n = (
0n In

−In 0n

)
.

Matrices, Z, satisfying ZT J2n = J2nZ are called skew-Hamiltonian (sometimes anti-
Hamiltonian). The term ‘Hamiltonian’ will not typically be used in the sense of quantum
mechanics, unless specified to the contrary (i.e., it will not be used to mean a Hermitian
matrix).

• Throughout H will denote the field (more precisely the division algebra) of the quaternions,
while P stands for the purely imaginary quaternions, tacitly identified with R3. Further,
in this paper the symbol i will be used for both the corresponding complex number and the
corresponding quaternion. The context should make it clear which of the two is implied.
Thus, for instance, in iMi⊗j , the first i stands for the complex number i, while the second
i (in the subscript) stands for the quaternion.
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Remark 2.1.

(i) Throughout this paper, use of the following observation will be made. Let X be an n × n

matrix satisfying X2 + c2In = 0, c �= 0. Then eX = cos(c)In + sin(c)

c
X. Here c2 is allowed

to be complex, and c is then taken to be
√

r ei θ
2 , with c2 = r eiθ , θ ∈ [0, 2π).

(ii) The fact that any matrix which satisfies X3 = −c2X, c �= 0, satisfies eX = I + sin(c)

c
X +

1−cos(c)
c

X2 ( Euler–Rodrigues’s formula) will also be used. Once again c2 is permitted to
be complex. Note that any matrix which satisfies X2 + c2In = 0, c �= 0, automatically
satisfies X3 = −c2X, c �= 0. For such matrices the exponential formula in (i) is better
to work with than the Rodrigues’ formula. Therefore, in this paper we will allude to a
matrix admitting a Euler–Rodrigues formula only if its minimal polynomial is of the form
x3 + c2x.

(iii) Explicit formulae for eA can be produced if the minimal polynomial of A is known and it
is low in degree (cf [1] where such formulae are written down from the characteristic
polynomial). However, since the corresponding explicit formulae for eA are more
complicated than those corresponding to (i) and (ii), they will not be pursued here.

H ⊗ H and gl(4, R). The algebra isomorphism between H ⊗ H and gl(4, R), which is
central to this work, is the following.

• Associate with each product tensor p ⊗ q ∈ H ⊗ H , the matrix, Mp⊗q , of the map
which sends x ∈ H to pxq̄, identifying R4 with H via the basis {1, i, j, k}. Thus, if
p = p0 + p1i + p2j + p3k; q = q0 + q1i + q2j + q3k, then

Mp⊗q = [x | y | u | v],

with x, y, u, v, the columns of the matrix Mp⊗q , given by the vectors in R4 representing
the quaternions pq̄, piq̄, pj q̄, pkq̄ respectively. Here, q̄ = q0 − q1i − q2j − q3k.

• Extend this to the full tensor product by linearity, This yields an algebra isomorphism
between H ⊗ H and gl(4, R). In particular, a basis for gl(4, R) is provided by the 16
matrices Mex⊗ey

as ex, ey run through 1, i, j, k.

This connection, which is known from the theory of Clifford algebras, has been put to
great practical use in solving eigenvalue problems for structured matrices by Mackey et al
[6, 9, 13, 14]. It can also be used for finding exponentials, eA,A ∈ gl(4, R) [19].

Remark 2.2. Canonical form for X ∈ su(4). Let = iH , with H Hermitian and traceless.
Then

H =
3∑

i=1

αiI2 ⊗ σi +
3∑

i=1

βiσi ⊗ I2 +
3∑

j=1

3∑
k=1

γjkσj ⊗ σk, αi, βi, γjk ∈ R. (2.2)

It is well known that via conjugation by a local unitary transformation (i.e., conjugation via a
U ∈ SU(2) ⊗ SU(2)) H can be put into the form

3∑
i=1

aiI2 ⊗ σi +
3∑

i=1

biσi ⊗ I2 +
3∑

i=1

ciσi ⊗ σi (2.3)

with ai, bi, ci ∈ R. We will use this canonical form at some points in section 4 (but not in
section 3). Furthermore, this local unitary transformation is determined by finding the singular
value factorization of the real 3 × 3 matrix (γjk) [2]. But this amounts to finding the spectral
factorization of a real 3 × 3 symmetric matrix—which can be performed in closed form [3].
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Relation to the Pauli tensor product basis. As mentioned in the introduction, the above basis
for gl(4, R) is closely related to the basis σi ⊗ σj , i, j = 1, . . . , 4 (with σ0 = I2, σ1 =
σx, σ2 = σy, σ3 = σk). The precise relation is tabulated below.

Pauli tensor basis Quaternion tensor basis
I2 ⊗ I2 M1⊗1

σx ⊗ I2 Mi⊗k

σy ⊗ I2 −iM1⊗j

σz ⊗ I2 Mi⊗i

I2 ⊗ σx Mk⊗j

I2 ⊗ σy iMi⊗1

I2 ⊗ σz Mj⊗j

σx ⊗ σx Mj⊗i

σx ⊗ σy −iM1⊗k

σx ⊗ σz −Mk⊗i

σy ⊗ σx −iM1⊗k

σy ⊗ σy Mi⊗j

σy ⊗ σz iMj⊗1

σz ⊗ σx −Mj⊗k

σz ⊗ σy −iM1⊗i

σz ⊗ σz Mk⊗k

3. Some closed form formulae for exponentials in su(4)

In this section, we provide closed form formulae for the exponentials of several matrices in
su(4), without resorting to the canonical form in equation (2.3). These formulae are based on
expressing the matrix in question as a sum of commuting summands, each of which satisfies
the condition in (i) of remark 2.1. These formulae can be divided into two classes: (i) those
which can be directly written down from the entries of the matrix; (ii) those that require
the spectral factorization of an associated real 3 × 3 symmetric matrix. This latter spectral
factorization can be achieved in closed form [3]. In particular, for several cases only a 2 × 2
spectral factorization is needed. These will be pointed out. Since most of these formulae are
the su(4) analogues of the results in [19], proofs will be provided only for cases not considered
in [19]. In the interests of brevity, we have not considered analogues of every possible result
in [19].

Remark 3.1. Consider X ∈ su(4), written as X = B + iC, with B,C real. Suppose it is
skew-Hamiltonian, for instance. Then a simple calculation reveals that the real matrices B,C

are skew-Hamiltonian as well. Hence so is the real matrix B + C. This observation yields
the H ⊗ H representation of such an X ∈ su(4). The basic properties used in exponentiating
the corresponding real matrix B + C in [19] was that it could be expressed as the sum of
commuting summands, each of which is annihilated by a polynomial of the type in (i) of
remark 2.1. Now these properties are not vitiated by the presence of the imaginary unit
i in X. Therefore, their exponentials are similarly found. The only difference is that the
hyperbolic trigonometric functions in the formula for eB+C will now be replaced by their
ordinary trigonometric equivalents. Similar arguments hold if X is perskewsymmetric etc.
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3.1. Exponentials directly from the entries

Below a list of three families of matrices in su(4), whose exponentials can be directly found
from their H ⊗ H representations, is presented.

(i) Symmetric, tridiagonal, Sii = 0. Consider

S = i




0 α 0 O

α 0 β 0
0 β 0 γ

0 0 γ 0


 .

Since such matrices arise in several applications, it is interesting to note that they can be
easily exponentiated. Indeed, such an S has the following representation:

S = i[Mp⊗i + Mq⊗j + Mr⊗k] = X + Y + Z,

with p = (
0,

β

2 , 0
)
, q = (

β

2 , 0,
γ +α

2

)
, r = (

0,
γ−α

2 , 0
)
, α, β, γ ∈ R. In terms of the Pauli

tensor basis, S is i β

2 (σx ⊗ σx) + i β

2 σy ⊗ σy + i γ−α

2 I2 ⊗ σx + i α−γ

2 σz ⊗ σx . Now note that
Y commutes with both X and Z, while X and Z anticommute. Further each squares to a
negative constant times the identity. So eS is given by

eS =
[

cos(λ1)I4 + i
sin(λ1)

λ1
(Mp⊗i + Mr⊗k)

] [
cos(λ2)I4 + i

sin(λ2)

λ2
Mq⊗j

]
.

In terms of the Pauli matrices this becomes

eS =
[

cos(λ1)I4 + i
sin(λ1)

λ1

(
β

2
(σx ⊗ σx) +

α − γ

2
σz ⊗ σx

)]

×
[

cos(λ2I4 + i
sin(λ2)

λ2

(
β

2
σy ⊗ σy +

γ + α

2
I2 ⊗ σx

)]

with λ1 = 1
2

√
β2 + (γ − α)2, λ2 = 1

2

√
β2 + (γ + α)2.

(ii) Perskewsymmetric X. Such an X ∈ su(4) satisfies, in addition, XT R = −RX. Such
matrices are expressible in the form

i[p1σz ⊗ I2 + p2σx ⊗ σz + ασy ⊗ σz + q1I2 ⊗ σz + q2σz ⊗ σx + βσz ⊗ σy].

Their exponential is given by[
cos(λ1)I4 + i

sin(λ1)

λ1
(p1σz ⊗ I2 + p2σx ⊗ σz + ασy ⊗ σz)

]

×
[

cos(λ2)I4 + i
sin(λ2)

λ2
(q1I2 ⊗ σz + q2σz ⊗ σx + βσz ⊗ σy)

]

with λ1 =
√

‖p‖2 + α2, λ2 =
√

‖q‖2 + β2

(iii) Skew-Hamiltonian X. These matrices satisfy, in addition, XT J = JX. Such matrices
are associated with time-reversal symmetries [8]. More specifically, a Hamiltonian (in
the usage of quantum mechanics), H, i.e., a Hermitian H, is associated with time-reversal
symmetry if HT J = JH . Clearly if H satisfies this additional condition, so does X = iH .
Such matrices are expressible in the form

i[bI4 + p1σy ⊗ σy + p2I2 ⊗ σz + p3I2 ⊗ σx + cσz ⊗ σy + dσx ⊗ σy].

Their exponential is given by

eib

[
cos(λ)I4 + i

sin(λ)

λ
(p1σy ⊗ σy + p2I2 ⊗ σz + p3I2 ⊗ σx + cσz ⊗ σy + dσx ⊗ σy)

]
,

λ =
√

‖p‖2 + c2 + d2.
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3.2. The purely imaginary case

The following algorithm for exponentiating a matrix X ∈ su(4), which is simultaneously
symmetric (equivalently purely imaginary), follows directly from the corresponding algorithm
for exponentiating purely real symmetric matrices in [19]. The only difference is that the
cosh(), sinh() in [19] will be replaced by cos(), sin(). Note that such an S will not have any
terms in equation (2.2) corresponding to members of the Pauli tensor basis, which contain
precisely one σy term.

• Represent the given symmetric S ∈ su(4) as the matrix as i[Mp⊗i + Mq⊗j + Mr⊗k], p, q,

r ∈ P .
• Identifying the pure quaternions p, q, r with vectors in R3, find the spectral factorization of

the real 3×3 symmetric matrix XT X, where X = [p | q | r]. Thus XT X = ∑3
1= σ 2

i viv
T
i .

• Compute ui = Xvi . (Note that ui are almost the left singular vectors. The only difference
is ‖ui‖ = σi .) Then S = i

∑3
i=1 Mui⊗vi

. Hence,

eS =
3∏

i=1

(
cos(σi)I4 + i

sin(σi)

σi

Mui⊗vi

)
. (3.4)

Definition 3.1 (Bisymmetric type). For several important examples only a 2 × 2 spectral
factorization is needed (which is extremely easy to write). Since the archtypical example is
provided by a matrix in su(4) which is, in addition, bisymmetric (i.e., simultaneously symmetric
and persymmetric), we will, to avoid circumlocution, call all such matrices of the bisymmetric
type.

3.3. Illustrative examples

We provide some important illustrations of the formulae developed in this section.

Illustration 1. Rabi oscillations in four-level systems. In [7] a detailed calculation, via a
calculation of eigenvectors and eigenvalues, is provided to calculate the evolution of a four-
level system, being irradiated by three laser fields, under the rotating wave approximation
and under resonance. Specifically, they consider a four-level system with energy levels
{Ek, k = 1, . . . , 3} which satisfy E1 − E0 > E2 − E1 > · · · > E3 − E2. This system
is irradiated by three laser fields with frequencies ωk = Ek − Ek−1, k = 1, . . . , 3. After
passage to a rotating frame, and under the assumptions of resonance and the rotating wave
approximation, the unitary generator in the rotating frame satisfies

i ˙̃U = (E0I4 + C)Ũ (3.5)

with

C =




0 g1 0 0
g1 0 g2 0
0 g2 0 g3

0 0 g3 0


 .

Here gi are the amplitudes of the three laser fields. Thus Ũ (t) = e−iE0t exp(−iCt). In [7],
exp(−iCt) is calculated by a direct calculation of the eigenvalues and eigenvectors of the
matrix −iC. Now, −iC is precisely a symmetric, tridiagonal matrix with a zero diagonal—
i.e., of the type considered in item (1) of the list in the previous subsection. Thus, exp(−iCt)
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may be found directly and is equal to

e−iCt =
[

cos(λ1)I4 + i
sin(λ1)

λ1
(β(σx ⊗ σx) + (α − γ )σz ⊗ σx)

]

×
[

cos

(
λ2I4 + i

sin(λ2)

λ2
(βσy ⊗ σy + (γ + α)I2 ⊗ σx

)]
,

with α = − 1
2g1t, β = − 1

2g2t, γ = − 1
2g3t, λ1 =

√
β2 + (α − γ )2, λ2 =

√
β2 + (γ + α)2.

A laborious but straightforward calculation confirms that the matrix entries provided by
the above representation of exp(−iCt) coincide with those in [7].

Illustration 2. Josephson junction. In [21, 23] the following system is considered:

iU̇ = HU,U(0) = I4

with

H =




E00 − 1
2EJ1 − 1

2EJ2 0
− 1

2EJ1 E10 0 − 1
2EJ2

− 1
2EJ2 0 E10 − 1

2EJ1

0 − 1
2EJ2 − 1

2EJ1 E00


 .

In [23] E00, E10, EJ1, EJ2 are taken to be constants reflecting current technology. Thus
U(t) = e−iHt . Now note that

−iH = −i
[

1
2 (E00 + E10)I4 − − 1

2EJ2σx ⊗ I2 − 1
2EJ1I2 ⊗ σx + 1

2 (E00 − E10)σz ⊗ σz

]
.

(3.6)

In terms of the Pauli tensor basis this is −i
[

1
2 (E00 + E10)M1⊗1 − 1

2EJ2Mi⊗k − 1
2EJ1Mk⊗j +

1
2 (E00 − E10)Mk⊗k

]
. Hence, e−iHt = e−i(E00+E10)t e−iH̃ t , with −iH̃ = −i[Mp⊗k + Mq⊗j ], with

the purely imaginary quaternions of the form p = p1i + p3k, q = q3k. Thus, the singular
value factorization of the 2 × 2 matrix(

p1 0
p3 q3

)

has to be found. Thus, this is an example of the bisymmetric type. Specifically, the
calculations proceed as follows: H̃ = −i

[
Mu1⊗v1 + Mu2⊗v2

]
with v1 = cos θ i − sin θk, v2 =

sin θ i + cos θk, Here tan(2θ) = 2pT q

qT q−pT p
. Further u1 = p1 cos θ i − (p3 + q3) sin θk,

u2 = p1 sin θ i + (p3 + q3) cos θk. Then ‖vi‖ = 1, i = 1, 2, while ‖u1‖ = σ1 =√
qT q cos2 θ + rT r sin2 θ − qT r sin(2θ), ‖u2‖= σ2 =

√
qT q sin2 θ + rT r cos2 θ + qT r sin(2θ).

Hence,

e−iH̃ t =
[

cos σ1I − i
sin σ1

σ1
Mu1⊗v1

] [
cos σ2I − i

sin σ2

σ2
Mu2⊗v2

]
. (3.7)

This reads, in terms of the Pauli matrices, as the following.

Illustration 3. Scalar coupling Hamiltonian. The matrix being exponentiated is X = −iH =
i[aI4 + bσz ⊗ I2 + cI2 ⊗ σz + dσz ⊗ σz + eσx ⊗ σx + f σy ⊗ σy]. This is the so-called scalar
coupling Hamiltonian, and is widely used in NMR spectroscopy. The corresponding H ⊗ H

representation is given by

X = −i[aM1⊗1 + bMi⊗i + cMj⊗j + dMk⊗k + eMj⊗i + f Mi⊗j ]

= −i[aM1⊗1 + Mp⊗i + Mq⊗j + Mr⊗k]

with p = (b, e, 0), q = (f, c, 0), r = (0, 0, d). Hence etX = eiat exp −it (Mp⊗i +
Mq⊗j + Mr⊗k). Thus, it remains to find the exponential of the purely imaginary symmetric
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matrix −it (Mp⊗i + Mq⊗j + Mr⊗k). Now note that the real matrix −t[p | q | r] is a block
diagonal matrix, with the northwest block a real 2×2 matrix and the southeast block the 1×1
matrix (−td). Hence, one needs to find only the singular value factorization of the real 2 × 2
matrix,

−t

(
b f

e c

)
= [p̃ | q̃].

Hence this is also of the bisymmetric type. The corresponding right singular vectors
of −t[p | q | r], written as quaternions, are v1 = cos θi − sin θj, v2 = sin θi + cos θj,

v3 = k, Here tan(2θ) = 2p̃T q̃

q̃T q̃−p̃T p̃
= 2(bf +ec)

f 2+c2−b2−e2 . Further u1 = −t (b cos θi −
f sin θj), u2 = −t (e sin θi + c cos θj), u3 = −tdk. Then ‖vi‖ = 1, i =
1, 2, 3, while ‖u1‖ = σ1 = t

√
p̃T p̃ cos2 θ + q̃T q̃ sin2 θ − p̃T q̃ sin(2θ), ‖u2‖ = σ2 =

t
√

p̃T p̃ sin2 θ + q̃T q̃ cos2 θ + p̃T q̃ sin(2θ), ‖u3‖ = td. Hence,

e−itX = e−iat

[
cos(σ1)I4 +

sin(σ1)

σ1
Mu1×v1

] [
cos(σ2)I4 +

sin(σ2)

σ2
Mu2×v2

]

×
[

cos(σ3)I4 +
sin(σ3)

σ3
Mu3×v3

]
.

Remark 3.2. There are several other practical applications which lead to the problem of
exponentiating su(4) matrices of the bisymmetric type. Examples include superconducting
circuits for solid-state quantum computation [18], J cross polarization experiments [17],
Heisenberg Hamiltonians (under the assumption that only one of the three components of
the magnetic field, assumed to be constant in time, is active during any period of time).

Remark 3.3. The number of matrices which can be easily exponentiated in this fashion can
be expanded by combining the above observations together with some useful conjugations.
Two classes of such conjugations immediately spring to mind. The first is obviously the class
of local unitary transformations. Thus, for instance the matrix X1 = i(aσz ⊗ σz + bσy ⊗ I2 +
cI2 ⊗ σy) is explicitly locally unitarily equivalent to X2 = i(aσz ⊗ σz + bσx ⊗ I2 + cI2 ⊗ σx).
The former is not a symmetric matrix, while the latter is (in fact, it is of the bisymmetric type).
However, eX1 is easily found once eX2 is. The second type of conjugation is via the so-called
magic basis matrix (see [16], for instance). Explicitly, letting

V = 1√
2




1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i




it is known that V (so(4, R))V ∗ = su(2) ⊗ su(2). It is instructive to examine its effect on
some of the other matrices considered here. Thus, for instance

• X, symmetric, tridiagonal with Xii = 0 implies V XV ∗ = i
[

β

2 σy ⊗ I2 + β

2 σy ⊗ σx +
γ−α

2 σy ⊗ σz + α−γ

2 σz ⊗ σy

]
. If one writes such a matrix explicitly, it is not clear that it too

can be written as the sum of commuting summands, each of which is easily exponentiated.
• X, skew-Hamiltonian implies V XV ∗ = i[aI2 ⊗ I2 + bσy ⊗ σx + cσy ⊗ σy + dσy ⊗ σz +

eσx ⊗ I2 + f σz ⊗ I2].
• X, perskewsymmetric implies V XV ∗ = i[aσx ⊗ σx + bσx ⊗ σz + cI2 ⊗ σy + dσy ⊗ σy +

eσz ⊗ σy + f σx ⊗ I2].

Thus, all such matrices are readily exponentiated.
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4. Euler–rodrigues formulae

In this section, we will find conditions which imply that a given X ∈ su(4) admits one of
three minimal polynomials. For such X the corresponding formulae for eX are very handy.
In particular, one of them is a Euler–Rodrigues-type formula, which explains the title of the
section. Finally, we will provide conditions that an su(4) matrix X = B + iC is of the normal
type, i.e., BC = CB. Note that, since X is a complex matrix, being of the normal type is not
the same as being normal. For some of the results below, we will appeal to the canonical form
for X in equation (2.3). This section will make use of the eigenvalue structure of matrices in
su(4). However, one does not need to determine the eigenvalues themselves.

Given an annihilating polynomial p for any matrix X, one can use p to find eX. There are
at least two manners in which to achieve this. One finds the zeros of p (but not the eigenvectors
of X ), and then proceeds to use any of a variety of methods (e.g, interpolation) to find eX

[10]. Alternatively one can express, via p, higher order powers of X in terms of lower orders
and use this to establish formulae for eX. In general, the representations of eX obtained via
either method are not always easy to work with. There are however three instances when
either method produces the same representation and this is particularly easy to manipulate.
Specifically, these are as follows.

(1) Quadratic type I: p(x) = x2 + c2. The corresponding formula for eX is eX =
cos(c)In + sin(c)

c
X.

(2) Quadratic type II: p(x) = x2 + 2βx + γ, β �= 0. Now eX = e−β
[(

cos σ + β sin(σ )

σ

)
I +

sin σ
σ

X
]
, with σ =

√
β2 − γ .

(3) Cubic type I: p(x) = x3 + c2x. In this case, eX = I + sin(c)

c
X + 1−cos(c)

c
X2.

Remark 4.1. The results to be presented here should be seen as a complement to those in the
previous section. In section 3, only the first of the above minimal polynomials was used. There
will be several X ∈ su(4) which are amenable to the techniques of either section. Consider,
for instance, X = −iJ (t)(σxσx +σyσy +σzσz). This matrix arises in the study of quantum dots
[5]. The corresponding p is x2 − 2iJx + 3J 2. However, X is also the sum of three commuting
terms, each of which is annihilated by a polynomial of the first type in the above list.

We begin with an explicit expression for the characteristic polynomial of an X ∈ su(4)

in canonical form.

Proposition 4.1. Consider an X ∈ su(4) in canonical form as given in equation (2.3). Let its
characteristic polynomial be x4 + µx2 + νx + π . Then

• µ = 2
∑3

i=1

(
a2

i + b2
i + c2

i

)
• ν = −8i

(∑3
i=1 aibici − ∏3

i=1 ci

)
.

• π = 1
4

{
2
(∑3

i=1

(
a2

i + b2
i + c2

i

))2 − 4
[(∑3

i=1

(
a2

i + b2
i + c2

i

)2
+ 4

∑3
i=1

∑3
j=1 a2

i b
2
j

+ 4
∑3

i=1

(
a2

i c
2
i + b2

i c
2
i

)
+ 2

∑3
i,j=1;i�=j c2

i c
2
j − 4

∑3
i,j,k=1;i�=j �=k aibicj ck

]}
.

Proof. These formulae follow from Newton’s identities, which imply that the coefficients of
the characteristic polynomial can be expressed in terms of the trace of suitable powers of X,
in conjunction with Tr(X) = 0. Further, Tr(Xi), i = 2, . . . , 4, were calculated by using the
H ⊗ H representation of X and looking for the 1 ⊗ 1 term in Xi . It is worth emphasizing
that the ease of quaternion multiplication renders it unnecessary to calculate X3 or X4 fully.
Indeed, besides calculating the 1 ⊗ 1 term in X3, one needs to find only those terms in X3

which would yield a 1 ⊗ 1 term in X4 (and quaternion multiplication facilitates this process).



On the exponential of matrices in su(4) 3031

We can now give a simple characterization of when X’s minimal polynomial is of either
quadratic type I or cubic type I. �

Proposition 4.2. X ∈ su(4) has (i) minimal polynomial p(x) = x2 + c2 iff ν = 0 and
µ2 = 4π ; (ii) minimal polynomial p(x) = x3 + c2x iff ν = 0 = π . Furthermore, in case (i)
c2 = µ

2 , while in case (ii) c2 = µ.

Proof. First, in view of X’s diagonalizability, p(x) = x2 + c2 is the minimal polynomial iff the
characteristic polynomial has two distinct roots (which add up to zero) each repeated twice.
Similarly, p(x) = x3 + c2x is the minimal polynomial iff the characteristic polynomial has
two simple distinct roots (which add up to zero) and a double root equal to zero.

Suppose first that ν = 0. Then the characteristic polynomial is a quadratic for x2. The first
case occurs precisely when this quadratic has a double root, i.e., when µ2 = 4π . Similarly,
the second case occurs when one of the roots of this quadratic is nil, i.e., precisely when π = 0
in addition.

Conversely, suppose the minimal polynomial is p(x) = x2 + c2. Now using the
characterization of the coefficients of the characteristic polynomial in terms of the elementary
symmetric functions of the eigenvalues, it follows that ν = 0 and µ2 = 4π . Similarly, if
p(x) = x3 + c2x the same characterization yields ν = 0 = π . �

Remark 4.2.

(i) Using these conditions it is easy to write down examples of X ∈ su(4) which admit
genuine Euler–Rodrigues formulae, i.e., X which have cubic type I minimal polynomials.
For instance, X = i(I2⊗σx +σx ⊗I2 +σy ⊗σy +cσz⊗σz), where c is any real solution of the
quartic c4+14c2−8c+17 = 0. This quartic admits at least two real solutions. Indeed, if all
solutions were complex, then they must be of the form a + ib, a − ib,−a + id,−a − id,
since there is no c3 term. It is easy to see that if this is the case, then the coefficient of
c2 has to be necessarily negative. Note further that c, in this example, could easily be
allowed to be time-varying.

(ii) It is noted in passing that one can write down the exponential of generic X which satisfy
ν = 0 (i.e., those cases for which neither of µ2 = 4π nor π = 0 hold), since in this case
all the eigenvalues of X are distinct and the corresponding interpolation-based formula
[10] assumes a simple form.

Characterizing when X has a minimal polynomial of quadratic type II via coefficients
of the characteristic polynomials does not seem fruitful. Therefore, we provide a different
characterization. For this characterization we do not require that X be placed in the form of
equation (2.3), though obviously the stated conditions would simplify for X in canonical form.

Proposition 4.3. Let X ∈ su(4) be expressed as Mp⊗1 + M1⊗q + i[Mr⊗i + Ms⊗j + Mt⊗k],
with p, . . . , t purely imaginary quaternions. Denote by C = [r | s | t]. Then X admits
x2 + 2βx + γ , with β �= 0, as its minimum polynomial iff there is a β̃ ∈ R satisfying the
following conditions:

CT p = β̃q

Cq = β̃p

pqT − Co(C) = β̃C,

(4.8)

where Co(C) is the matrix of cofactors of C. If these conditions hold, then (i) γ =
−[‖p‖2 + ‖q‖2 + ‖r‖2 + ‖s‖2 + ‖t‖2]; (ii) β = iβ̃.
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Proof. From a variety of viewpoints it should be clear that if x2 +2βx +γ is to be the minimum
polynomial of X, then necessarily β is purely imaginary, while γ is real. Using this fact, the
above conditions stem from a direct calculation of X2. �

Remark 4.3. The purpose of this remark is to identify some situations, under which the
system of equations (4.8) admits solutions.

(i) When C has rank 1, equation (4.8) always possesses solutions, i.e., it is always possible to
find p, q, β̃ satisfying them for the given C. Such a C always possesses a representation
of the form C = uvT , with uT u = vT v (it is easy to find such a representation). Picking
β̃ = uT u = vT v, p = u

√
β̃, q = v

√
β̃ we find that equation (4.8) is satisfied. This yields

a systematic procedure to construct examples admitting a quadratic minimal polynomial
of type II.

(ii) Conversely, starting with a non-zero p one can find q, C such that equation (4.8)
always holds. The key to this is to observe that if C is invertible in proposition 4.3,
then the conditions given in equation (4.8) can be written in a different form, to wit:
CCT p = β̃2p, q = C−1(β̃p); β̃(ppT − CCT ) = det(C)I . This yields a method to
construct more examples of X admitting a quadratic minimal polynomial of Type II.
Pick a p �= 0. Choose β̃ =

√
1 + pT p, and pick a C satisfying det(C) = −β and

CCT = I + ppT . Finally, set q = C−1(β̃p).
This can always be achieved by picking C to be a solution of the equation

CCT = I + ppT with a negative determinant, since I + ppT is positive definite and
thus possesses a square root. For instance, one could multiply the easily determined
unique positive definite square root of I + ppT by diag(1, 1,−1) to obtain a C with
determinant −β̃. Further, det(CCT ) = 1 + pT p and obviously CCT p = β̃2p. Indeed,
the eigenvectors of I + ppT are p (with eigenvalue 1 + pT p = β̃2), and any two vectors
orthogonal to p (corresponding to eigenvalue 1 with double multiplicity).

(iii) If precisely one of p or q is zero, then there is no solution to equation (4.8). When
both are zero, there is a solution iff CCT is proportional to the identity matrix, i.e., iff
the vectors r, s and t are orthogonal and have the same length. Note that in this case
X = i[M1 + M2 + M3], with the Mi commuting, and each with a quadratic minimal
polynomial of type I. Further, this is precisely the case wherein the canonical form X, as
in equation (2.3), is X = i[c1σx ⊗ σx + c2σy ⊗ σy + c3σz ⊗ σz], with either c1 = c2 = c3

(in the event det(C) > 0) or c1 = c2 = −c3 (in the event det(C) < 0). However, one
does not require passage to this canonical form for finding eX.

(iv) Similar conditions can be written down one p, q, r, s, t for X to admit other minimal
polynomials. We omit them in the interests of brevity.

Conditions for ‘normality’. Next, given X = B + iC, we characterize, when [B,C] = 0, i.e.,
when the real matrix B + C is normal. The motivation should be obvious—it is possible to
exponentiate both B and iC in closed form, and hence X. While the statement of this result
uses the canonical form given by equation (2.3), much of the proof does not require it.

Proposition 4.4. Let X = B + iC = Mp⊗1+1⊗q + iMr⊗i+s⊗j+t⊗k, p, . . . , t ∈ P be in canonical
form. Suppose, without loss of generality, that at least one of p, q is non-zero. Then [B,C] = 0
iff the following conditions hold:

(i) p �= 0, q = 0: a1 = a3 = c1 = c3 = 0
(ii) p �= 0, q �= 0: a1 = a3 = b1 = b3 = 0,

∣∣ b2
a2

∣∣ = ∣∣ c1
c3

∣∣ = 1
(iii) p = 0, q �= 0: b1 = b3 = c1 = c3 = 0
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Proof. For any X ∈ su(4) (even those not in canonical form) a quick calculation reveals that
[B,C] = 2[p × r ⊗ i + p × s ⊗ j + p × t ⊗ k + r ⊗ (q × i) + s ⊗ (q × j) + t ⊗ (q × k)]. If X
is in the canonical form in equation (2.3), then we have

p = (−a2, 0, 0); q = (0, b2, 0); r = (b3, c1, 0); s = (c2, a3, a1); t = (b1, 0, c3).

Hence [B,C] is twice the matrix representation of b1b2i⊗ i +(c3b2 −c1a2)k⊗ i +a1a2j ⊗
j − a2a3k ⊗ j − b3b2i ⊗ k + (a2c3 − c1b2)j ⊗ k. The conclusion follows from this. �

Remark 4.4. By applying the proof of the previous result to X not in canonical form, one can
deduce other commutativity results. For instance, suppose Y is in canonical form, and one
defines Y1 = i

( ∑3
i=1 aiI2 ⊗σi +

∑3
i=1 biσi ⊗I2

)
and Y2 = i

∑3
i=1 ciσi ⊗σi . Then [Y1, Y2] = 0

iff (i) c3
c2

= b1
a1

; (ii) c3
c1

= b2
a2

and (iii) c2
c1

= b3
a3

. To see this let X = B + iC = V ∗YV , with V the
magic basis matrix (see remark 3.3). Then [Y1, Y2] = 0 iff B + C is normal. Note that while
Y is in canonical form, X is not.

5. Conclusions

In this paper, closed form formulae are provided for exponentials of several important anti-
Hermitian 4 × 4 matrices. These matrices cover many important applications. The basic
technique is the isomorphism between real 4 × 4 matrices and H ⊗ H . We believe that
this connection is aptly suited to exploit the properties of su(4) stemming from its direct
sum decomposition into the real skew-symmetric (antisymmetric) matrices and the purely
imaginary symmetric matrices. While no claim to the superiority of the representation of the
exponential provided by this work is made, it is our hope that further research will yield more
applications of these formulae.
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